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ON COMBINATIONS OF RANDOM LOADS
i, by

D, P. Gaver

and

P. A. Jacobs

Operations Research Department
Naval Postgraduate School

Monterey, CA 93940

1. Introduction and Assumptions

The integrity of a great many physical structures is

potentially threatened by combinations of physical loads of vary-

ing magnitudes from various sources. We are thinking of structures

such as buildings (for instance those that house or contain

nuclear power plant elements); aircraft and spacecraft; electrical

transmission networks; bridges, piers, and dams; and offshore

oil drilling rigs that experience loads from wind, snow ard ice,

tides, earthquakes, and so forth. In many instances the total

[ load or stress experienced by a structure varies in time in an

apparently random fashion. Certain load components vary rather

S~slowly; for example, that component resulting from snow and ice

accumulation; others occur more nearly as impulses, such

as those associated with winds or earthquakes. The problem is

to design structures to withstand the superposition of loads

from many sources with at least an approximately understood

(high) probability. In engineering terms we wish to work towards
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developing a rational ,safety factor technique for designing

structures to withstand- the combination of loads anticipated.

The purpose of this paper is--to describe .and investigate certain

simple but somewhat realistic probabilistic load models for

use in design, -and perhaps safety, assessment of structures.

In this paper we confine attention to the superposition

of just two load types: shock loads, and constant loads. For

example, wind gusts, flash floods, and earthquakes have varying

magnitudes and have relatively short durations in comparison to

the times between their occurrences; these will be modeled as

instantaneous shock loads. On •the other hand snow, ice, or

water accumulation, or even the presence of slow-moving vehicles

or furniture, present loads that remain nearly constant in time,

occasionally changing to new levels; these will be modeled as

constant loads that change infrequently. Throughout this investi-

gation it will be assumed that the effective stress exerted by

several types of loads acting simultaneously can be expressed

as a linear combination (actually, sum) of those component loads,

the loads being treated as stochastic processes. Somewhat

similar load combination models have been studied in the past;

see the work of Bosshardt [1975], Larrabee and Cornell [19781,

McGuire and Cornell [1974], Pier and Cornell [1973], VWeh [19771,

and others. Note that the present study utilizes the notion of

stochastic point processes as a modeling tool; see Cox and Miller

[1965] for an introduction, and Lewis (ed.) [1972] for a more

extensive treatment.

2
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1.1. Modeling Assumptions and Problems

Assume that the successive magnitudes of shock loads are

independently and identically distributed (i.i.d.) random variables

with common continuous distribution function G(y); G(y) = 0

for y < 0. The shock loads' appearance is regulated by a Poisson

process with rate P. Furthermore, the constant loads have i.i.d.
2

magnitudes with distribution F(x); F(x) = 0 for x < 0. Constant

loads change at moments of a Poisson process with rate A.

Finally, the shock and constant load processes are, for the

most part, taken to be statistically independent, although

this assumption can be relaxed at times without difficulty.

Let X(t) (respectively Y(t)) be the magnitude of the

constant (shock) load process at time t; (Y(t) will usually

be zero). Put Z(t) = X(t) + Y(t), the superposition of the two

loads at time t, and M(t) = sups < t Z(s), the maximum load

combination in [O,t]. See Figure 1. Let T= {inf t > 0:Z(t) >x},
CONSTANT LOAD PROCESS

Xlt)

.. .fi~*lf

Z (t 1 LOAD COMBINATION PROCESS

Z (0

fri

Fig. I
THE LOAD COMBINATION
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i.e. the first-passge time to a combined stress level x. Ui2,•ss fatigue

or some other cumulative effect is in operation Tx will represent

the time to failure of a structure whose strength is x, and that

is subjected to a stress history {Z(t), t > 01.

Section 2 is concerned with the description of the distri-

bution of the maximiun process and the distribution of Tx. The

first step is to obtain Laplace transforms with respect to time.

Asymptotic results (x ÷ c) for E IT ] and the distribution of

the normalized value T*= Tx/(E[Tx]) will then be presented. In

particular it will be shown that the distribution of T* is
x

approximately a unit exponential distribution as x becomes large

and so does E[TX].

Section 3 is devoted to a study of the asymptotic

properties of the "maximum process," M(t), as t .These

results relate to those of Welsch [1972] and O'Brien [1974a,b];

they are seen to extend the classical "extreme value" results

of Gumbel [19581 and Gnedenko [1943]. We present results for

the asymptotic distribution of M(t) and for the joint distri-

bution of the first and second maximum load combination in

[O,t] as t ÷ -.

4
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2. The Laplace Transform of the Distribution of M(t)

and a First-Passage Time Limit Theorem

2.1. Towards the Distribution of M(t)

ConsiIer- first the distribution function of the maximum

process, H X(t) = P{M(t) < x), for x > 0. Its Laplace transform

ii ,,vailable immediately by noting that i.f T1  is the time of

the first change in the magnitude of the constant load process,

then

ii (t) = P{M(t) < x, T1 > t} + P{M(t) < x, T1 < t}x
et exp{-pt G(x-y)) F(dy)

t x
+ e-Iv di, f exp{-Pv G(x-y)l H (t-v) F(dy) . (2.1)

0 0 x

Next take Laplace transforms with respect to t:

00
h() -f e- H (t)dt = S (•) + SxM () hx(•) ; (2.2)0 x x x x

reversal of the order of integration provides t" .t

x •

Mx(•) = f [• + X + ijG(x-y)I F(dy) . (2.3)x

5
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S Hence, h-x1M 1 - UT (2.4)

I' 4eems to be difficult to solve (2.1) (invert (2.4)) in any

simple convenient form for any interesting choice of the distri-

butions F and G. However, useful information can still be

gleaned from (2.4). Fiir"_ it is clear that if T is the

first-passage time to combined load x, so SM

T = inf{t > 0:M(t) > x) (2.5)
XA

then, since P{IM(t) < x} = PIT > t),

h() = f e- P{T > 0ldt . (2.6)

x x

Liet F _ 0 in (2.4) to find that

M(2.7)
m(x) E[Txl hx(O) = - ()(2.7)"

We now record some expressions for the mean first-passage time

to x when zspecific distributions for shock and constant load

-macnitudes are in force.

6
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Example 2.1. Identical exponentials: F(x) G(x) e eX, 4> 0.

In this case

'x -

and

E[T X (1-ex x + x+WnKX+ InfU X+u1Ie (Xue
eX -x -

X' + In[ (XU X+ -x)

as x co.

Example 2.2. Different expanentials:

F(x) e a(x) =ekX where 4- 2.

In this case

x Nk(x-) I

2kx kx
= )-J. e ]+2jj[l-e

2V12 [-krx + £n[Od-p)O +X }ze- )-I]

7
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Thus
2kx -1 e kx

E[T I A 1 N x) Ae2 kx - 7-1 (2.9)
xAl

Example 2.3. F(x) = e-x, G(x) = e-x. In this case

M(0) 1-xm w e e + re-x -Nx

Swhere 
N(x) = (e-x 1)[(A + (A + ue)

Thus

1 x + e-

E[T] x e [1-x + ie-x N(x)][l - pN(x)]- +- - e..

(2.10)

Example 2.4.

1x < a 1/a

F(x) = alx-a _> a1/a,
a 1 x Ža~

and

E(TME

S•- ~x < aI/

where a > 0 and a., a2 > 0. In this case as x -

_E[T ] [Xal + ia2]-ixa (2.11) "__

8
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Example 2.5.

1 if x< I,
•(x) a

X if x > 1,

and

1 if X< 1,

G(x) =
x-R if X > 1.

If a <, then as x *

E [T x.

If B < a, then as x÷ (2.12)
E E[T] • 1

The next result is a limiting result for the first

time the load combination process exceeds a given level x.

THEOREM (2.1). The limiting distribution of T is exponential,x

in the sense that

1 t

lim P{m(x) T > t} = et
Sx÷ X0

where

x0  inf{t:F*G(t) 11.

and
m(x) E [T ]1.

9
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Proof. Put P = k-i and rearrange (2.3) so that the

denominator of (2.7) is in the form

1 XMx(O) = F(X) + f pG-(x-y)]-+ pd(x-y)1 F(dy) -hl(x). (2.13)
0

Now apply the bounded convergence theorem and the fact that F

and G have densities to show that m(x) ÷ as x ÷ x0 . It

next follows by a change of variables in (2.4) that

.. Mx(•(Y(x)) !J

j e- P{m(x)- T > tldt : m(x)-I h (y(x)) = m (y(x))] (2-14)
xxm(x) [1- yx)

0 x

where Y(x) = Em(x)-. By the bounded convergence theorem applied

to (2.3), m 1
lim M(y(x)) . (2.15)
X 0

Again from (2.3) we have

1 -XMxx )

x

+ F(x) + X + pG(x-y)Iylx)- + 1+ pG(x-y)] 1 F(dy)
0

Hence,

10
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MWx~ i xm (y (x))

= ~f 1Y (x) +X 1 + IPG(X-y)J F (dy)A0

+ MWx (F(x) + f pa (X-y) [y Wx)X + 1 +PG(x-y)]- F (dy)]I
0

Let I pa Fx p(x-y)(yA [Y 1 +- pa(x-y)]-l F(dy)
0

then

f F)-h(dy) pax-)f[+p xy yx)X+p xy ]

0

x{ [1 +a (x-y) [y (x) A Gxy] 1

= * F(dy) pa(x-y) y(x)x 1 I {(l+pa(x-y)] [y(x) A' +1 -x y) 1

w e e 0 k+ 1P( X y+y~ )~ + 1 p ( y ) 1 1 ( xy ) ]1.

kYx) =~



By the-bounded convergence theorem

lim k(x) = 0

Recall that S+ o0x)
m~x) = +h0(x) "

Hence,

h1 '((x) h-2  W ýh 1 (x)A- k(x)

m -1 + O(x)h.x)

1 + 0 (x)k(x)

which tends to zero as x x X6. Therefore,

m~x~-AM(y~))]~X A h2(x) - h1(x)l
rn-1 -1 2r (xJlira MWx [1i- ANx(Y~) W I -1 + A- lim, [1 + hl) ,

x11) x0 x ÷x0

= (•+ 1) -.

The result now follows from (2.14), (2.15) and the unicity

result for Laplace transforms.

12
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3. Asymptotic Results for the Maximum Load Combination

-In this section we- will study the asymptotic behavior of

i the maximum load combination to occur during time interval (0,t]

as t +. Most results concerning maxima of non-Gaussian random

j variables are for variables in discrete time. Thus we will first

obtain results for an embedded discrete time load combination
I

process.

Let Sn be the time of the nth change in magnitude of

the load combination process; that is,

S= iznf{t >O:Z(t) E Z(t-)}

and for n > (3.1)

Sn = inf{t > Sn-1:Z(t) M Z(t-)}.

The change in the load combination at time Sn may be due to
either a change in the constant load process or to the arrival

of a shock load. Let Zn = Z(Sn) (respectively, X X(Sn),
n n n

and = Y(Sn)) be the magnitude of the load combination

(respectively constant load and shock load) at time Sn. Put

"n= max (Zk) • (3.2)•I • O<k~n

Note that the times {Sn} are the arrival times of a Poisson

process with rate X + -v and are independent of {Zn}. Further,
n

13
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[ P{Z0 < X) F F(x)

and for nrk .

P{~z< xl= px) +~*G~) -(3.3)IP { -n < k ) --T k ) 4 -q F * ~
whe red

00

p f Xet e' dt -

0 A1

and

3.1. Properties of An Imbedded Maximum Process

We will first study the asymptotic behavior of Mn as

n -*0*Note that the random -variables {Znl are not independent.

In fact {(nzn); n = 0,1 .... is a discrete time !4arkov pro-

cess. The following result describes the dependence of the

random variables {Zn}

PROPOSITION (3.1). The sequence {Znd is uniformly mixing

(cf. Loynes [1965, p. 9941).

FProof. Let A and B be events such that A =f(Z 0 ***" Zn)

and B g(Z~i Z+l ... ) Then

IP(A nl B) -P(A) P(B)I

= E[(P(BIX ) -P(B)); All

=qmlE[ f(Ex (dy) -F(dy)) P(BIX = y); All
X n+m

<2qm P(A)

where e denotes the Dirac measure concentrated at the point x.

1.4
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This last proposition and a result of Loynes [1965,

Theorem 11 imply that the only possible nondegenerate limiting

distributions of Mn are the same three types that occur in

the asymptotic behavior of the maxima of independent random

variables; namely (except for scale and location parameters),

0 x < 0,

H1 (x)I
exp{-(x- )} x > 0, a > 0

exp{-(-xex)l x < 0, a > 0 (3.4)

1 x>0

H3 (x) = exp{-ex1 -I < x < 00

However, for the process {Zn , the following Proposition

(3.2) together with a result of Loynes [1965, Lemma 2]

implies that the limiting behavior of Mn will not necessarily

be the same as that of the maximum of a sequence of independent

random variables having common distribution pF(x) + qF*G(x).

PROPOSITION (3.2). For any sequences kn ÷ and cn +o

k

lim (kn i) P{Z* > C Iz > c I > 0 4
n k n~ n i+l n 1 n

15



Proof. Note that-for any- c > 0

P{zi+1 > cIZ 1 > c} > q> .

The .result now follows4

In order to obtain the limiting distribution of Mn we

will first study the limiting distribution of a related process

which is defined as follows.

Let

jnV_ 1 if Yn 0

inn 0 if Y>

that is, Jn = 1 if the nth change in the load combination process
Kn

{Z(t); t > 01 is due-to a change in the constant load and 0 if

r it is due to the arrival of a shock load.

Let
To=O

andr. T
T = inf{k>Tnl:Jk }11

I

the index of the. change in the load combination process which- is

due tot.the- nthl change in the constant load process. Let

SLn (k) = n l{k}(ti - Ti_)STTi<n

ii 1-

the inumber of T. that occur before (discrete) time n such

that T. -ri 1 = k; (l{k}(x) 1 if x = k and 0 otherwise).

16
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LetI =U = sup zk

the maximum load combination to occur during the nth period of

= time the constant load process remains-constant.

I Zn

U1 ---------- - - - - +

0 I 2 3--- 4Y5 6 Y7

OII
Fig. 2

I THE DISCRETE TIME LOAD COMBINATION PROCESSI AND MAXIMA.
Wi
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Por each integer K

NI ,n = max U 1 I[0,K] (Tji T.i i)

1 the maximum load combination for the discrete time process in

the time interval [O,n] which is due to those shock loads

and constant loads which occur during time intervals of constancy

for the discrete time constant load process which are of length

(2)less than or equal to K. Finally, let be the magnitude

of the second maximum of the sequence

ui •[0K]( - •i-i'• }

Note fr 'om (3.2) that

MK,n Mn
HIence

HKIee (x) -P{M <_ X1

K'n K,nK ]Lnk W
E[ 11 F*-Gk (x)

k=0 -

>P{Mh <x1.

S3.2. Limiting Results for Pareto-tail Load Distributions

I In what follows we will assume

18
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F(x) = alx- L(x) , x > 0

(3.5)

G(x) =a 2 x-a L(x) x > 0

where L is a slowly varying function.

Next we will find the limiting distribution of MK as

n + for fixed K. Then we will show that the limiting distri-

bution of MKn is close to that of Mn for K large.

PROPOSITION (3.3). Let F and G be as in (3.5), and u

be such that

(un)-c L(un) n as n ÷ (3.6)
Then

lim HKn(unx) exp{_x-a p2 k
nroo that = x{x qk [aI + ka2 l} =•(x)

n) 0Kn k=0 1 2 k

W Proof. Note that

1 C(x) kG(x) G(x)k-1

k (x) 2 Glx)k-2

+ x [al(x)

kax- L(x) as x ÷ .

2I
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-Thus 'by resualt' (8.13) on page 278 of Feller 1(1971],

-l-F*Gk W) -'(a1 4 ka2) x-. Mx~)I

HIence as n oo

It K
H (unx) =E[exp{ I- Ln(k) Xn F*Gk (u nx)1I

K,,n k=0

"-' E[exp{ K Ln,(k) f-1 F*Gk (ulx)l]
k=0

E exp {k= _[~a1 + ka I

Note that

Iurn L(k) 2kk= 1. .
- = p q k 0,1J.

n o n

The result now follows by the bounded convergence theorem.It
-= ýTHEOREM (3.4). Under-the assumptions of Proposition (3.3)

lim P{Mn <unx} =exp{-x-a[pal + qa2 ]1

Proof. Let

K 2-
Hk(x) =exp{ I p q x (aa1 + ka 2]1

k=0

and

20
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-expi-x [pal + qai.

< P{ (ux' -H (x)xZ5

I{n- unx KXn (nx

+IH K, (unx) -HxK(x)I +HK W) -H W

I Note that

Ii-~~~ E [~ ~) iE1- exp{-An (K)]* (3.7)-

where

00

An( ) L (kc) [1 F*G (u X) +o1-FG~ )]
W k=K+1 '

ERE Ln [1 - G(x (ukGx) o( *

and

1-F*G (x) G -(x +k f Gki (y) P(x -y) G(dy)
0

< kc F*G(x)

21



it follo0ws- that

00

k=K+l

Note-that, for 0 < e <1

VG(%x) <i(xl-E:) + a(-u X(1- C)) + P (u xe) G (u: x).
<i -. uc( n n n

Therefore for fixed 6 > 0 there is an No such that for

L (k) k _I_(un;) n Ma .~ ax a + a x- + 6k;I(+l n k=K+l fln 2

Fur~ther,

n~ 2k
EfLn (k) I < E( 1 lk(Ti -T.9 np qi

Hence- for n >- N (6)-0

E[Ln(k) k 7F'(unx)I < [aj+a 2 Ix 6] ) q. (3.8)I=~ k=K+l
Choose y > 0. Apply Jensen's ineqaality to (3.7):

foBf>Nl6 exp{-An(K)I] < 1--exp{E[-An(K)UI 0

22I
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as K ÷ •° Thus for sufficientlyý large n ýand K

'In_ Unx HK,n(Un

is arbitrarily small. It follows that

rlin P{M < xn 1= exp{-x7 [pal + qa2]} (3.9)
n + oo

whereas, if the load prcess were one of independent random vari-

ables, denoted by Zn with distribution pF(x) + qF*G(x), the

maximum would be distributed as follows

lim P{Mn< xun} = exp{-x-[al + qa 2 ]} (3.10)
n co•

The un is the same in each case; see (3.6). Comparison of

(3.9) and (3.10) shows that the expression (3.10) overestimates

the probability of exceeding a given stress level.

O'Brien [1974a] obtained the above result in the case

in which there is a constant load (i.e., a 2 = 0) alone, or

only a shock load (i.e., a1 = 0).

23
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3.3. Results for Continuous Time

THEOREM (3.5). "Let -F and - G- bea's -bi-nt3.5)'.- ktý u(t)

be such that u(t) L(u(t)),• 1/t as t + 00. Then l+I

rim P{M(t) < xu(t)} exp{-x- [XaI + pa2 ]1 (3.9)
t + 0 2le

Proof. Let N(t) be the number of changes in the load combina-

tion process, {Z(u); u > 0}, in the time interval [0,t). The

process {N(t) ;t > 0} is a Poisson process with rate

Further,

M (t) ,MNt•

The result now follows from the proofs of Proposition (3.3)

and Theorem (3.4) ,, the strong law of large numbers for N(t),

and the bounded convergence theorem.

Slight modifications of the proofs of Proposition (3.3)

and Theorems (3.4) and (3.5) imply the following result.

THEOREM. (3.6), Let

F(x) = x-L(x) and G(x) = x L(x)

where L is a slowly varying function.

a) If a < a and u(t) is such that u(t)-aL[u(t)] 1 l/t as t + e,

then
lim P{M(t) < xu(t)} = exp{-Xx-e}. (3.10)

; o24



b) If 8 < a and u(t) is such that u(t)-Ltu(t)] .i/t as ,t + •, o

then
rim P{M(t) < xu(t)} = exp{- Px-11.

The above result indicates that if the tail of the dis-

tribution of the magnitude of a constant load (respectively shock

load) dominates that of the shock (respectively constant load),

the asymptotic behavior of the maximum load combination is the

same as that of the maximum constant load (respectively shock

load) by itself. On the other hand, Theorem (3.5) indicates

that if tails of the distributions of the magnitudes of the

constant and shock loads are comparable, then the asymptotic

behavior of the maxima of the load combination process depends

on both the constant and shock load processes.

3.4. Limitina Results for the Joint Distribution of the First

and Second Maxima

Let denote the magnitude of the second maxima ofn

{Zk; k < n}. Assume F and G are as in (3.5). Let

H~x W exp{-xa [pa1 + qa~lj. j

as before. Techniques similar to those used in the proofs of

the results in Subsection (3.2) yield tha following result
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-THEOF•(WM'3.7). Let' un be as, in- (3.6') Then

lim P{M (n < Yun, Mn a xn = B(y,x)
nf + 00

* where- for x- < y,

B(y,x) H(x)

:anr& for y < x

2
B(y,x) =-H(y) {i + [p a1 + qa 2 ] [y-0 _ ]

A'result of Welsch [1972] implies that the limiting

di-stribution B must be of the following form

H(x) if y > x,

B =0 (3.11I)
H(y){l-g[(kn H(x)/Rn H(y))]Ln H(y)} , if y < x

where g(s), 0 < s < 1 is a concave, nonincreasing function which

:satisfies g(0)(l - s) < g(s) < 1 - s. In our case

[ p 2a + qa 2 ]
g(s) a 1s (3.12)Lpa1 +q
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Let M12) (ýt)o denote the magnitude of the second maximum

to occur in [0,t) for the continuous time load 6ombination.

process {Z(s); s > 0Y. Arguments similar to those in Section

3.3 can be used to obtain the following result.

THEOREM (3.8). Let F and G be as in (3.5) and u(t) be

such that u(t)-ci L(u(t)) i/t as t + c. For x > y

lim P{M(t) < xu(t), M(2 ) (t) < yu(t)}
t ÷o

= exp{-y-a[Xal + a 2 ]} 1 + - ai + va2 (y-a - x-)

for x < y

lim P{M(t) < xu(t'), M (2) (t) < yu(t)}
t÷

= exp{-x-c[Xal + va 2 ]}.
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